AXISYMMETRIC SURFACE BUCKLING

OF AN ELASTIC HALF-SPACE UNDER COMPRESSION

O. I. Ivanishcheva and V. G. Trofimov

UDC 539.3

The subject of investigation is the axisymmetric surface buckling of a transversally isotropic half-space under compression in a three-dimensional setup. Subcritical strains are assumed to be small and homogeneous.

A half-space, transversally isotropic with respect to the $O x_{3}$ axis, is compressed in two mutually orthogonal directions along the $O x_{1}$ and $O x_{2}$ axes under a load of intensity p. A compressive load of intensity q is applied to the surface $x_{3}=0$ of a half-space.

Let us use the linearized stability equations [1]

$$
\left[\sigma_{j m}^{*}-p_{j n} u_{m, n}^{*}\right]_{, j}=0,
$$

where $\sigma_{j m}^{*}$, and u_{m}^{*} are strain and displacement disturbances. When the body is transversally isotropic and the load is given by $p_{11}=p, p_{22}=p$, and $p_{33}=q$, the stability equations have the form

$$
\begin{gather*}
\left(a_{11}-p\right) u_{1,11}^{*}+\left(G_{12}-p\right) u_{1,22}^{*}+(G-q) u_{1,33}^{*}+\left(G_{12}+a_{12}\right) u_{2,12}^{*}+\left(G+a_{13}\right) u_{3,13}^{*}=0, \\
\left(G_{12}+a_{12}\right) u_{1,12}^{*}+\left(G_{12}-p\right) u_{2,11}^{*}+\left(a_{11}-p\right) u_{2,22}^{*}+(G-q) u_{2,33}^{*}+\left(G+a_{13}\right) u_{3,23}^{*}=0, \tag{1}\\
\quad\left(G+a_{13}\right) u_{1,13}^{*}+\left(G+a_{13}\right) u_{2,23}^{*}+(G-p)\left(u_{3,11}^{*}+u_{3,22}^{*}\right)+\left(a_{33}-q\right) u_{3,33}^{*}=0 .
\end{gather*}
$$

By means of the two-dimensional Fourier transform with respect to the x_{1} and x_{2} coordinates

$$
u_{j}\left(\zeta, \eta, x_{3}\right)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} u_{j}^{*}\left(x_{1}, x_{2}, x_{3}\right) \exp \left(i\left(\zeta x_{1}+\eta x_{2}\right)\right) d x_{1} d x_{2},
$$

stability equations (1) are transformed into the following system of ordinary differential equations with respect to the Fourier transforms of displacement disturbances $u_{1}\left(\zeta, \eta, x_{3}\right), u_{2}\left(\zeta, \eta, x_{3}\right)$, and $u_{3}\left(\zeta, \eta, x_{3}\right)$:

$$
\begin{gather*}
\left(\left(a_{11}-p\right) \zeta^{2}+\left(G_{12}-p\right) \eta^{2}\right) u_{1}-(G-q) u_{1,33}+\zeta \eta\left(G_{12}+a_{12}\right) u_{2}+i \zeta\left(G+a_{13}\right) u_{3,3}=0, \\
\left(G_{12}+a_{12}\right) \zeta \eta u_{1}+\left(\left(G_{12}-p\right) \zeta^{2}+\left(a_{11}-p\right) \eta^{2}\right) u_{2}-(G-q) u_{2,33}+i \eta\left(G+a_{13}\right) u_{3,3}=0, \tag{2}\\
i\left(G+a_{13}\right)\left(\zeta u_{1,3}+\eta u_{2,3}\right)+(G-p) \rho^{2} u_{3}-\left(a_{33}-q\right) u_{3,33}=0
\end{gather*}
$$

($\rho^{2}=\zeta^{2}+\eta^{2}$). Under the assumption that $u_{2}=(\eta / \zeta) u_{1}$, system (2) is reduced to two equations:

$$
\begin{gather*}
\rho^{2}\left(a_{11}-p\right) u_{1}-(G-q) u_{1,33}+i \zeta\left(G+a_{13}\right) u_{3,3}=0, \\
i\left(G+a_{13}\right) \rho^{2}(\zeta)^{-1} u_{1,3}+(G-p) \rho^{2} u_{3}-\left(a_{33}-q\right) u_{3,33}=0 . \tag{3}
\end{gather*}
$$

In turn, the system of equations (3) reduces to the equation of the fourth-order

$$
\begin{equation*}
u_{3,3333}-\rho^{2} b_{1} u_{3,33}+\rho^{4} b_{2} u_{3}=0 . \tag{4}
\end{equation*}
$$

Here

$$
\begin{gathered}
b_{1}=\left((G-q)(G-p)-\left(a_{13}+G\right)^{2}+\left(a_{11}-p\right)\left(a_{33}-q\right)\right) /\left((G-q)\left(a_{33}-q\right)\right) ; \\
b_{2}=\left(\left(a_{11}-p\right)(G-p)\right) /\left((G-q)\left(a_{33}-q\right)\right) .
\end{gathered}
$$

Voronezh State University, Voronezh 394000. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 36, No. 4, pp. 152-154, July-August, 1995. Original article submitted July 20, 1994.

The local buckling of the surface is characterized by fading of displacement disturbances as the distance from the epicenter of the disturbances increases. The solution to differential equation (4) is depth-fading off the surface when $x_{3} \rightarrow-\infty$ and has the form

$$
u_{3}\left(\zeta, \eta, x_{3}\right)=C_{1}(\zeta, \eta) \exp \left(\rho k_{1} x_{3}\right)+C_{2}(\zeta, \eta) \exp \left(\rho k_{2} x_{3}\right)
$$

where $C_{1}(\zeta, \eta)$ and $C_{2}(\zeta, \eta)$ are arbitrary functions;

$$
k_{1,2}=\left(0.5 b_{1} \pm\left(0.25 b_{1}^{2}-b_{2}\right)^{0.5}\right)^{0.5}
$$

Disturbances of displacements also have to fade when $\left|x_{1}\right| \rightarrow \infty$, and $\left|x_{2}\right| \rightarrow \infty$ which corresponds to fading of their Fourier transforms when $|\zeta| \rightarrow \infty$ and $|\eta| \rightarrow \infty$. To satisfy this condition, assume that $C_{1}(\zeta, \eta)=$ $A_{1} \exp (-\rho c), C_{2}(\zeta, \eta)=A_{2} \exp (-\rho c)\left(A_{1}, A_{2}\right.$ are arbitrary constants and c is a positive constant). Finally, we write the Fourier transform of displacement disturbance $u_{3}\left(\zeta, \eta, x_{3}\right)$ in the form

$$
\begin{equation*}
u_{3}\left(\zeta, \eta, x_{3}\right)=A_{1} \exp \left(\rho\left(k_{1} x_{3}-c\right)\right)+A_{2} \exp \left(\rho\left(k_{2} x_{3}-c\right)\right) \tag{5}
\end{equation*}
$$

Fourier transforms of displacement disturbances $u_{1}\left(\zeta, \eta, x_{3}\right)$ and $u_{2}\left(\zeta, \eta, x_{3}\right)$ are determined from system (3):

$$
\begin{align*}
& u_{1}\left(\zeta, \eta, x_{3}\right)=(i \zeta / \rho)\left(A_{1} m_{1} \exp \left(\rho\left(k_{1} x_{3}-c\right)\right)+A_{2} m_{2} \exp \left(\rho\left(k_{2} x_{3}-c\right)\right)\right) \\
& u_{2}\left(\zeta, \eta, x_{3}\right)=(i \eta / \rho)\left(A_{1} m_{1} \exp \left(\rho\left(k_{1} x_{3}-c\right)\right)+A_{2} m_{2} \exp \left(\rho\left(k_{2} x_{3}-c\right)\right)\right) \tag{6}
\end{align*}
$$

Here

$$
\begin{gathered}
m_{1}=k_{1}\left(d_{1}-d_{2}^{2} k_{1}\right) ; \quad m_{2}=k_{2}\left(d_{1}-d_{2}^{2} k_{2}\right) \\
d_{1}=\left((G-p)(G-q)-\left(a_{13}+G\right)^{2}\right) /\left(\left(a_{13}+G\right)\left(a_{11}-p\right)\right) \\
d_{2}=\left(\left(a_{33}-q\right)(G-q)\right) /\left(\left(a_{13}+G\right)\left(a_{11}-p\right)\right)
\end{gathered}
$$

We use an inverse Fourier transform to calculate the originals of the displacement disturbances:

$$
\overline{u_{j}^{*}}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} u_{j}\left(\zeta, \eta, x_{3}\right) \exp \left(i\left(\zeta x_{1}+\eta x_{2}\right)\right) d \zeta d \eta
$$

After computations we get

$$
\begin{aligned}
& u_{1}^{*}\left(x_{1}, x_{2}, x_{3}\right)=\frac{A_{1} m_{1} x_{1}}{\left(r^{2}+\left(k_{1} x_{3}-c\right)^{2}\right)^{3 / 2}}+\frac{A_{2} m_{2} x_{1}}{\left(r^{2}+\left(k_{2} x_{3}-c\right)^{2}\right)^{3 / 2}} \\
& u_{2}^{*}\left(x_{1}, x_{2}, x_{3}\right)=\frac{A_{1} m_{1} x_{2}}{\left(r^{2}+\left(k_{1} x_{3}-c\right)^{2}\right)^{3 / 2}}+\frac{A_{2} m_{2} x_{2}}{\left(r^{2}+\left(k_{2} x_{3}-c\right)^{2}\right)^{3 / 2}} \\
& u_{3}^{*}\left(x_{1}, x_{2}, x_{3}\right)=\frac{-A_{1}\left(k_{1} x_{3}-c\right)}{\left(r^{2}+\left(k_{1} x_{3}-c\right)^{2}\right)^{3 / 2}}+\frac{-A_{2}\left(k_{2} x_{3}-c\right)}{\left(r^{2}+\left(k_{2} x_{3}-c\right)^{2}\right)^{3 / 2}}
\end{aligned}
$$

where $r^{2}=x_{1}^{2}+x_{2}^{2}$.
To determine the arbitrary constants A_{1} and A_{2}, we employ the boundary conditions [1]

$$
P_{m}^{*}=n_{j}\left(\sigma_{j m}^{*}-p_{j n} u_{m, n}^{*}\left(1-\delta_{m n}\right)\right)
$$

which on the surface $x_{3}=0$ under the given load $p_{33}=q$ take the following form:

$$
\begin{equation*}
P_{1}^{*}=G\left(u_{1,3}^{*}+u_{3,1}^{*}\right)-q u_{1,3}^{*}, \quad P_{2}^{*}=G\left(u_{2,3}^{*}+u_{3,2}^{*}\right)-q u_{2,3}^{*}, \quad P_{3}^{*}=a_{13}\left(u_{1,1}^{*}+u_{2,2}^{*}\right)+a_{33} u_{3,3}^{*} \tag{7}
\end{equation*}
$$

If the load $p_{33}=q$ on the surface $x_{3}=0$ is a "tracing" one, disturbances $P_{1}^{*}=-q u_{3,1}^{*}, P_{2}^{*}=-q u_{3,2}^{*}$, and $P_{3}^{*}=0$ appear. The equality $P_{1}^{*}=P_{2}^{*}=P_{3}^{*}=0$ holds for "dead" load disturbances. Let us apply a two-dimensional Fourier transform to the boundary conditions (7). In the case of a "dead" load, we have

$$
\begin{equation*}
(G-q) u_{1,3}-i G \zeta u_{3}=0, \quad(G-q) u_{2,3}-i G \eta_{3} u=0, \quad a_{33} u_{3,3}-i a_{13}\left(\zeta u_{1}+\eta u_{2}\right)=0 \tag{8}
\end{equation*}
$$

Substitution of the transforms of displacement disturbances (5) and (6) into the boundary conditions (8) yields an algebraic system of linear homogeneous equations with respect to the unknowns A_{1} and A_{2} :

$$
\begin{gathered}
A_{1}\left((G-q) k_{1} m_{1}-G\right)+A_{2}\left((G-q) k_{2} m_{2}-G\right)=0 \\
A_{1}\left((G-q) k_{1} m_{1}-G\right)+A_{2}\left((G-q) k_{2} m_{2}-G\right)=0 \\
A_{1}\left(a_{13} m_{1}+a_{33} k_{1}\right)+A_{2}\left(a_{13} m_{2}+a_{33} k_{2}\right)=0
\end{gathered}
$$

Since the first two equations coincide, the requirement of the existence of a nonzero solution of two linear equations leads to the characteristic equation for "critical" loads p_{0} and q_{0} :

$$
\left(k_{1}-k_{2}\right)\left((G-q) a_{13} m_{1} m_{2}+a_{33} G\right)+\left(m_{1}-m_{2}\right)\left((G-q) a_{33} k_{1} k_{2}+a_{13} G\right)=0
$$

In the case of a "tracing" load, after analogous computations we obtain the characteristic equation

$$
\left(k_{1}-k_{2}\right)\left((G-q) a_{13} m_{1} m_{2}+a_{33}(G+q)\right)+\left(m_{1}-m_{2}\right)\left((G-q) a_{33} k_{1} k_{2}+a_{13}(G+q)\right)=0
$$

Computer analysis shows that:
(1) local surface buckling is possible only in media with small shear rigidity $G=G_{13}=G_{23}$ since in other media the critical load p_{0} has a very great value and becomes unreal;
(2) the critical load p_{0} increases only slightly with the growth of the elastic modulus ratio $E_{0}=E / E^{*}$, where E is Young's modulus in the plane of isotropy $x_{1} O x_{2}$ and E^{*} is Young's modulus in the direction of the $O x_{3}$ axis;
(3) the load q on the surface $x_{3}=0$ increases only slightly the critical load p_{0} compared to the case of a free surface;
(4) the critical loads p_{0} are equal in the case of "dead" and "tracing" loads q on the surface $x_{3}=0$.

REFERENCES

1. A. N. Guz', Stability of Three-Dimensional Deformable Bodies [in Russian], Naukova Dumka, Kiev (1971).
