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A X I S Y M M E T R I C  S U R F A C E  B U C K L I N G  

OF A N  E L A S T I C  H A L F - S P A C E  U N D E R  C O M P R E S S I O N  

O. I. Ivanisheheva and V. G. Trofimov UDC 539.3 

The subject of investigation is the axisymmetric surface buckling of a transversally isotropic half-space 
under compression in a three-dimensional setup. Subcritical strains are assumed to be small and homogeneous. 

A half-space, transversally isotropic with respect to the Oz3 axis, is compressed in two mutually 
orthogonal directions along the Oxl and Ox2 axes under a load of intensity p. A compressive load of intensity 
q is applied to the surface x3 = 0 of a half-space. 

Let us use the linearized stability equations [1] 

* " it* [%~ - p j . . ~ , . ] , j  = 0, 

where cram, and u*  are strain and displacement disturbances. When the body is transversally isotropic and 
the load is given by pll = p, t922 = p, and p33 = q, the stability equations have the form 

( a l l  - -  p)u~,11 -'t- (G12  - p)u~,22 n t- ( G  - q)u~,33 -/- (G12  -I- a12)u~,12 n t- ( G  -t- a13)u~,13 = 0, 

(Gn  + an)u*l,n + (Gn  - p)u~, u + (all - p)u~,22 + (G - q)u~,33 n u ( G  n u a13)u~,23 = 0, (1) 

( a  + a13)u~,13 + ( a  + a ,aM,23  + (G - P ) ( ~ h l  + ~ h 2 )  + (a33 - q)u~,33 = 0. 

By means of the two-dimensional Fourier transform with respect to the xl and x2 coordinates 

+co +co 

uj(~,~,xa) = ~ ui(x1,x2,x3) exp(i(~xl + rlx2))dxl dx2, 
--00 --00 

stability equations (1) are transformed into the following system of ordinary differential equations with respect 
to the Fourier transforms of displacement disturbances ul ((', r/, x3), u2((, 77, x3), and u3((, r/, x3): 

( (an  - p)r + (Gn  - p)r/2)Ul - (G - q)ul,33 + Ql(Gn + an)u2 + ir + a13)u3,3=0, 

( a n  + an)r + ( (Gn - p)r + (an  - p)r/2)u2 - (G - q)u2,33 + irl(a + a13)u3,3 = 0, (2) 

i(a + a13) ( r  -t- r/u2,3) q- ( G  - p ) p 2 u 3  - ( aaa  - q)u3,33 = 0 

(p2 = r + 7/2). Under the assumption that u2 = (rl/r system (2) is reduced to two equations: 

p2(a11  - -  p ) U l  --  ( G  - q)u l , 33  + ir + a13)u3,3  = O, 
(3) 

i( G + a 1 3 ) p 2 ( ~ ) - 1 u 1 , 3  + ( G - p)p2u3 - (a33 - q)u3,33 = O. 

In turn, the system of equations (3) reduces to the equation of the fourth-order 

tt3,3333 - -  p2blus,33 + p4b2u3 = O. (4) 

Here 
bl = ( ( c  - q) (C - p) - (.13 + c )  2 + ( a n  - p)(a33 - q ) ) / ( ( c  - q)(a33 - q)); 

b2 = (Can - p)(G - p))IC(G - q)(ass - q)). 
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The local buckling of the surface is characterized by fading of displacement disturbances as the distance 
from the epicenter  of the disturbances increases. The solution to differential equat ion (4) is depth-fading off 
the surface when x3 ~ - c r  and has the form 

u3(r r/, x3) = C1(r r/) exp (pklx3) + C2(r 7?) exp (p k2 x3), 

where C1(r r/) and C2(~,r/) are  arbitrary functions; 

kl,2 = (0.5 bl 4- (0.25 b 2 - b2)~ ~ 

Disturbances of displacements also have to fade when [Zl[ ~ oo, and Ix2l--+oo which corresponds to fading 
of their Fourier transforms when ICI --* oo and Ir/I ~ oo. To satisfy this condition, assume that  Ca(r = 
A~ exp ( -pc ) ,  C2(r r/) = A2 exp ( -pc)  (Aa, A2 are arbi t rary  constants  and c is a posit ive constant).  Finally, 
we write the  Fourier t ransform of displacement dis turbance u3(( ,  r/, z3) in the form 

u3(r r/, z3) = AI exp (p(klx3 - c)) + A2 exp (p(k2x3 - c)). (5) 

Fourier transforms of displacement disturbances Ul(~, r/, x3) and u2(~, 71, x3) are determined from 
sys tem (3): 

ul(~,  7/, x3) = ( i~/p)(aaml  exp (p(kaz3 - c)) + a2m2 exp (p(k2x3 - c))), 
(6) 

u2(r z3) = (ir//p)(alma exp  (p(klZa - c)) + a 2 m 2  exp (p(kzz3 - c))). 

Here 
ml  = kl(dl  - d2kl); m2 = k2(dl - d~k2); 

dx = ((G - p)(G - q) - (a13 + G)2)/((a13 + a ) ( a l l  - p)); 

d2 = ((a33 - q)(G - q))/((al3 + G)(a l l  - p)). 

We use an inverse Fourier transform to calculate the originals of the displacement disturbances: 

_ . + o o  + 0 0  

u; (x l , x2 ,x3)  = ~t f f u j (~ ,r / ,x3)exp( i (~xl  + r/x2))dCdr/. 
~00 --00 

After computa t ions  we get 

, A l m l X l  

~tl(;gl, ~2, x3) = (r  2 + (k lz  3 -- C)2)3/2 + 

AlmlX2 
=; (xx ,  ~2, ~3) = (~2 + (kl~3 - c)2)3/2 + 

- A l ( k l z 3  - c) 
=~(~1,  ~2, ~3) = (r2 + ( k l ~  - ~)2)3/2 + 

where r 2 = z~ + x 2. 

A 2 m 2 x l  

(r2 + (k2x3 - c)2)3/2'  

A2m2x2 
( r  2 + (k2x3 - c)2)3/2'  

- A 2 (  k2z3 - c) 
(r2 ~t. (k2z3 -- C)2) 3/2'  

To determine the arbi t rary  constants A1 and A2, we employ the boundary  conditions [1] 

P *  = n j (~i - -  - p j , u * , , ( 1  - 6 m ) ) ,  

which on the surface x3 = 0 under  the given load p33 = q take the following form: 
P~* a ( ~ , 3  * * * * * * * = + U3,1) -- qUl, 3, P~ = G(tt; ,  3 + u3,2) - qzt2,3, P~ = a13(ttl, 1 + u2,2) + a33tt3, 3. (7) 

If the load p33 = q on the surface z3 = 0 is a "tracing" one, disturbances Pi' = -qua , l ,  P~ = -qua,2, 
and P~ = 0 appear.  The equali ty P~' = P~ = P~ = 0 holds for "dead" load disturbances.  Let us apply a 
two-dimensional Fourier t ransform to the boundary  conditions (7). In the case of a "dead" load, we have 

(G - q)ul,3 - i G~u3 = O, (G - q)u2,3 - i Gr/3u = 0, a33u3,3 -- i a13 (~Ul + r/u2) "- 0. (8) 
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Substitution of the transforms of displacement disturbances (5) and (6) into the boundary conditions (8) 
yields an algebraic system of linear homogeneous equations with respect to the unknowns A1 and A2: 

AI((G - q)klml - G) + A2((G - q)k2rn2 - G) = O, 

Aa((G - q)kaml - G) + A2((G - q)k2m2 - G) = O, 

Aa(al3ml -}- azzkl) -{- A2(a13m2 ~" a33k2) -- 0. 

Since the first two equations coincide, the requirement of the existence of a nonzero solution of two linear 
equations leads to the characteristic equation for "critical" loads po and qo: 

(kl - k2)((G - q)alamlm2 + a33G) + (ml - m2)((G - q)a33klk2 + alaG) = 0. 

In the case of a "tracing" load, after analogous computations we obtain the characteristic equation 

(kl -- k2)((a -- q)al3mlm2 -t- a33(G -t- q)) -t- (ml - m2)((G - q)a33kl ]c2 Jr a l3 (a  -~- q ) ) : 0 .  

Computer analysis shows that: 
(1) local surface buckling is possible only in media with small shear rigidity G = G13 = G23 since in 

other media the critical load po has a very great value and becomes unreal; 
(2) the critical load po increases only slightly with the growth of the elastic modulus ratio Eo = E/E*, 

where E is Young's modulus in the plane of isotropy xlOx2 and E* is Young's modulus in the direction of 
the Ox3 axis; 

(3) the load q on the surface x3 = 0 increases only slightly the critical load po compared to the case of 
a free surface; 

(4) the critical loads po are equal in the case of "dead" and "tracing" loads q on the surface x3 = 0. 
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